

USN										6.	17EC834
-----	--	--	--	--	--	--	--	--	--	----	---------

Eighth Semester B.E. Degree Examination, July/August 2022 Machine Learning

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

<u> Module-1</u>

1 a. List and explain perspectives and issues in machine learning.

(08 Marks)

b. Explain List-Then-Eliminate algorithm.

(04 Marks)

c. Write FIND-S algorithm and find maximally specific hypothesis for the given instances shown in Table Q1(c) using find – S.

Example	Sky	Air temp.	Humidity	Wind	Water	Forecast	Enjoy sport
	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Table Q1(c) (08 Marks)

OR

- 2 a. Explain the various stages involved in designing a learning system.
- (10 Marks)
- b. Apply candidate elimination algorithm to find specific and general boundaries of the version space on the given training example shown in Table Q2(b). (Note: Maligant is +ve, Benign is -ve).

Explain	Shape	Size	Color	Surface	Thickness	Target Concept
1	Circular	Large	Light	Smooth	Thick	Malignant
2	Circular	Large	Light	Irregular	Thick	Malignant
3	Oval	Large	Dark	Smooth	Thin	Benign
4	Oval	Large	Light	Irregular	Thick	Malignant

Table Q2(b) (10 Marks)

Module-2

- 3 a. Define decision tree construct the decision tree to represent the following Boolean function:
 - i) $A \wedge \neg B$
 - ii) $A \vee [B \wedge C]$
 - iii) A XOR B
 - iv) $[A \wedge B] \vee [C \wedge D]$. (10 Marks)
 - b. Derive and explain gradient descent rule and explain stochastic approximation to gradient descent.

 (10 Marks)

OR

4 a. Discuss the two approaches to prevent overfitting of data.

(08 Marks)

b. Construct decision tree for the following data using ID3 algorithm shown in Table Q4(b).

Instance	a_1	a_2	\mathbf{a}_3	Classification
1	True	Hot	High	No
2	True	Hot	High	No C
3	False	Hot	High	Yes
4	False	Cool	Normal	Yes
5	False	Cool	Normal	Yes
6	True	Cool	High	No
7	True	Hot	High	No
8	True	Hot	Normal	Yes
9	False	Cool	Normal	Yes
10	False	Cool	High	Yes

Table Q4(b)

(12 Marks)

Module-3

- 5 a. Prove that minimizing the square error between the output hypothesis predictions and training data will output a maximum likelihood hypothesis. (08 Marks)
 - b. Classify the data set: <Green, 2, Tall, No> using Naïve Bayes classifier, the dataset shown in Table Q5(b). Also find conditional probability for attributes.

No.	Color	Legs	Height	Smelly	Species
1 .	White	3	Shot	Yes	M C
2	Green	2	Tall	No	M
3	Green	3	Short	Yes	M
4	White	3	Short	Yes	M
, 5	Green	2	Short	No	Н
6	White	2	Tall	No	Н
7	White	2	Tall	No	Н
8	White	_ 2	Short	Yes	Н

Table O5(b)

(12 Marks)

OR

6 a. Explain brute force MAP learning algorithm.

(08 Marks)

b. Classify the dataset : <Red, SUV, Domestic> using Naïve Bayes classifier using the dataset shown in Table Q6(b). Also find conditional probability for attributes.

Example No.	Color	Type	Origin	Stolen
1	Red	Sports	Domestic	Yes
2,	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Table Q6(b)

(12 Marks)

	17EC024
	17EC834
Module-4	
Explain K-nearest neighbor learning algorithm.	(08 Marks)
Describe radial basis functions.	(08 Marks)
Explain Locally weighted regression.	(04 Marks)
Emplain Boomly Weighted Tegrossien.	(011/11/11/19)
OR	
What is learning set of First Order Rule (FOIL)? Explain briefly.	(08 Marks)
Describe sequential covering algorithm.	(08 Marks)
Describe case based reasoning.	(04 Marks)
Module-5	
Explain in detail the explanation based learning algorithm PROLOG – EBG.	(10 Marks)
Explain the Q-Function and Q-Learning algorithm assuming deterministic rewards	
with example.	(10 Marks)
OR	
Explain FOCL algorithm with example.	(10 Marks)
Write a short note on :	(10 Marks)
i) Analytical Versus Inductive Learning	
ii) Reinforcement Learning.	(10 Marks)
	,

3 of 3

7

8

9

10

b.